Source code for astrophot.models.flatsky_model

import numpy as np
from scipy.stats import iqr
import torch

from ..utils.decorators import ignore_numpy_warnings, default_internal
from ..param import Param_Unlock, Param_SoftLimits
from .sky_model_object import Sky_Model
from ._shared_methods import select_target

__all__ = ["Flat_Sky"]


[docs] class Flat_Sky(Sky_Model): """Model for the sky background in which all values across the image are the same. Parameters: sky: brightness for the sky, represented as the log of the brightness over pixel scale squared, this is proportional to a surface brightness """ model_type = f"flat {Sky_Model.model_type}" parameter_specs = { "F": {"units": "log10(flux/arcsec^2)"}, } _parameter_order = Sky_Model._parameter_order + ("F",) useable = True
[docs] @torch.no_grad() @ignore_numpy_warnings @select_target @default_internal def initialize(self, target=None, parameters=None, **kwargs): super().initialize(target=target, parameters=parameters) with Param_Unlock(parameters["F"]), Param_SoftLimits(parameters["F"]): if parameters["F"].value is None: parameters["F"].value = torch.log10(torch.median(target[self.window].data) / target.pixel_area) if parameters["F"].uncertainty is None: parameters["F"].uncertainty = ( ( iqr( target[self.window].data.detach().cpu().numpy(), rng=(31.731 / 2, 100 - 31.731 / 2), ) / (2.0 * target.pixel_area.item()) ) / np.sqrt(np.prod(self.window.shape.detach().cpu().numpy())) ) / (10 ** parameters["F"].value.item() * np.log(10))
[docs] def evaluate_model(self, X=None, Y=None, image=None, parameters=None, **kwargs): ref = image.data if X is None else X return torch.ones_like(ref) * (image.pixel_area * 10 ** parameters["F"].value)