Source code for astrophot.models.point_source

from typing import Optional

import torch
import numpy as np

from ..param import Param_Unlock, Param_SoftLimits, Parameter_Node
from .model_object import Component_Model
from .core_model import AstroPhot_Model
from .psf_model_object import PSF_Model
from ..utils.decorators import ignore_numpy_warnings, default_internal
from ..image import PSF_Image, Window, Model_Image, Image
from ._shared_methods import select_target
from ..errors import SpecificationConflict

__all__ = ("Point_Source",)

[docs] class Point_Source(Component_Model): """Describes a point source in the image, this is a delta function at some position in the sky. This is typically used to describe stars, supernovae, very small galaxies, quasars, asteroids or any other object which can essentially be entirely described by a position and total flux (no structure). """ model_type = f"point {Component_Model.model_type}" parameter_specs = { "flux": {"units": "log10(flux)"}, } _parameter_order = Component_Model._parameter_order + ("flux",) useable = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.psf is None: raise ValueError("Point_Source needs psf information")
[docs] @torch.no_grad() @ignore_numpy_warnings @select_target @default_internal def initialize(self, target=None, parameters=None, **kwargs): super().initialize(target=target, parameters=parameters) if parameters["flux"].value is not None: return target_area = target[self.window] target_dat = target_area.data.detach().cpu().numpy() with Param_Unlock(parameters["flux"]), Param_SoftLimits(parameters["flux"]): icenter = target_area.plane_to_pixel(parameters["center"].value) edge = np.concatenate( ( target_dat[:, 0], target_dat[:, -1], target_dat[0, :], target_dat[-1, :], ) ) edge_average = np.median(edge) parameters["flux"].value = np.log10(np.abs(np.sum(target_dat - edge_average))) parameters["flux"].uncertainty = torch.std(target_area.data) / (np.log(10) * 10**parameters["flux"].value)
# Psf convolution should be on by default since this is a delta function @property def psf_mode(self): return "full" @psf_mode.setter def psf_mode(self, value): pass
[docs] def sample( self, image: Optional[Image] = None, window: Optional[Window] = None, parameters: Optional[Parameter_Node] = None, ): """Evaluate the model on the space covered by an image object. This function properly calls integration methods and PSF convolution. This should not be overloaded except in special cases. This function is designed to compute the model on a given image or within a specified window. It takes care of sub-pixel sampling, recursive integration for high curvature regions, PSF convolution, and proper alignment of the computed model with the original pixel grid. The final model is then added to the requested image. Args: image (Optional[Image]): An AstroPhot Image object (likely a Model_Image) on which to evaluate the model values. If not provided, a new Model_Image object will be created. window (Optional[Window]): A window within which to evaluate the model. Should only be used if a subset of the full image is needed. If not provided, the entire image will be used. Returns: Image: The image with the computed model values. """ # Image on which to evaluate model if image is None: image = self.make_model_image(window=window) # Window within which to evaluate model if window is None: working_window = image.window.copy() else: working_window = window.copy() # Parameters with which to evaluate the model if parameters is None: parameters = self.parameters # Sample the PSF pixels if isinstance(self.psf, AstroPhot_Model): # Adjust for supersampled PSF psf_upscale = torch.round(self.psf.target.pixel_length / working_window.pixel_length).int() working_window = working_window.rescale_pixel(psf_upscale) working_window.shift(- parameters["center"].value) # Make the image object to which the samples will be tracked working_image = Model_Image( window=working_window ) # Fill the image using the PSF model psf = self.psf( image = working_image, parameters=parameters[self.psf.name], ) # Scale for point source flux working_image.data *= 10**parameters["flux"].value # Return to original coordinates working_image.header.shift(parameters["center"].value) elif isinstance(self.psf, PSF_Image): psf = self.psf.copy() # Adjust for supersampled PSF psf_upscale = torch.round(psf.pixel_length / working_window.pixel_length).int() working_window = working_window.rescale_pixel(psf_upscale) # Make the image object to which the samples will be tracked working_image = Model_Image( window=working_window ) # Compute the center offset pixel_center = working_image.plane_to_pixel(parameters["center"].value) center_shift = pixel_center - torch.round(pixel_center) #working_image.header.pixel_shift(center_shift) psf.window.shift(working_image.pixel_to_plane(torch.round(pixel_center))) psf.data = self._shift_psf(psf = psf.data, shift = center_shift, shift_method = self.psf_subpixel_shift, keep_pad = False) psf.data /= torch.sum(psf.data) # Scale for psf flux psf.data *= 10**parameters["flux"].value # Fill pixels with the PSF image working_image += psf # Shift image back to align with original pixel grid #working_image.header.pixel_shift(-center_shift) else: raise SpecificationConflict(f"Point_Source must have a psf that is either an AstroPhot_Model or a PSF_Image. not {type(self.psf)}") # Return to image pixelscale working_image = working_image.reduce(psf_upscale) if self.mask is not None: working_image.data = working_image.data * torch.logical_not(self.mask) # Add the sampled/integrated/convolved pixels to the requested image image += working_image return image