Source code for astrophot.utils.conversions.functions

import numpy as np
import torch
from scipy.special import gamma
from torch.special import gammaln


[docs] def sersic_n_to_b(n): """Compute the `b(n)` for a sersic model. This factor ensures that the :math:`R_e` and :math:`I_e` parameters do in fact correspond to the half light values and not some other scale radius/intensity. """ return ( 2 * n - 1 / 3 + 4 / (405 * n) + 46 / (25515 * n ** 2) + 131 / (1148175 * n ** 3) - 2194697 / (30690717750 * n ** 4) )
[docs] def sersic_I0_to_flux_np(I0, n, R, q): """Compute the total flux integrated to infinity for a 2D eliptical sersic given the :math:`I_0,n,R_s,q` parameters which uniquely define the profile (:math:`I_0` is the central intensity in flux/arcsec^2). Note that :math:`R_s` is not the effective radius, but in fact the scale radius in the more straightforward sersic representation: .. math:: I(R) = I_0e^{-(R/R_s)^{1/n}} Args: I0: central intensity (flux/arcsec^2) n: sersic index R: Scale radius q: axis ratio (b/a) """ return 2 * np.pi * I0 * q * n * R ** 2 * gamma(2 * n)
[docs] def sersic_flux_to_I0_np(flux, n, R, q): """Compute the central intensity (flux/arcsec^2) for a 2D eliptical sersic given the :math:`F,n,R_s,q` parameters which uniquely define the profile (:math:`F` is the total flux integrated to infinity). Note that :math:`R_s` is not the effective radius, but in fact the scale radius in the more straightforward sersic representation: .. math:: I(R) = I_0e^{-(R/R_s)^{1/n}} Args: flux: total flux integrated to infinity (flux) n: sersic index R: Scale radius q: axis ratio (b/a) """ return flux / (2 * np.pi * q * n * R ** 2 * gamma(2 * n))
[docs] def sersic_Ie_to_flux_np(Ie, n, R, q): """Compute the total flux integrated to infinity for a 2D eliptical sersic given the :math:`I_e,n,R_e,q` parameters which uniquely define the profile (:math:`I_e` is the intensity at :math:`R_e` in flux/arcsec^2). Note that :math:`R_e` is the effective radius in the sersic representation: .. math:: I(R) = I_ee^{-b_n[(R/R_e)^{1/n}-1]} Args: Ie: intensity at the effective radius (flux/arcsec^2) n: sersic index R: Scale radius q: axis ratio (b/a) """ bn = sersic_n_to_b(n) return ( 2 * np.pi * Ie * R ** 2 * q * n * (np.exp(bn) * bn ** (-2 * n)) * gamma(2 * n) )
[docs] def sersic_flux_to_Ie_np(flux, n, R, q): """Compute the intensity at :math:`R_e` (flux/arcsec^2) for a 2D eliptical sersic given the :math:`F,n,R_e,q` parameters which uniquely define the profile (:math:`F` is the total flux integrated to infinity). Note that :math:`R_e` is the effective radius in the sersic representation: .. math:: I(R) = I_ee^{-b_n[(R/R_e)^{1/n}-1]} Args: flux: flux integrated to infinity (flux) n: sersic index R: Scale radius q: axis ratio (b/a) """ bn = sersic_n_to_b(n) return flux / ( 2 * np.pi * R ** 2 * q * n * (np.exp(bn) * bn ** (-2 * n)) * gamma(2 * n) )
[docs] def sersic_inv_np(I, n, Re, Ie): """Invert the sersic profile. Compute the radius coresponding to a given intensity for a pure sersic profile. """ bn = sersic_n_to_b(n) return Re * ((1 - (1 / bn) * np.log(I / Ie)) ** (n))
[docs] def sersic_I0_to_flux_torch(I0, n, R, q): """Compute the total flux integrated to infinity for a 2D eliptical sersic given the :math:`I_0,n,R_s,q` parameters which uniquely define the profile (:math:`I_0` is the central intensity in flux/arcsec^2). Note that :math:`R_s` is not the effective radius, but in fact the scale radius in the more straightforward sersic representation: .. math:: I(R) = I_0e^{-(R/R_s)^{1/n}} Args: I0: central intensity (flux/arcsec^2) n: sersic index R: Scale radius q: axis ratio (b/a) """ return 2 * np.pi * I0 * q * n * R ** 2 * torch.exp(gammaln(2 * n))
[docs] def sersic_flux_to_I0_torch(flux, n, R, q): """Compute the central intensity (flux/arcsec^2) for a 2D eliptical sersic given the :math:`F,n,R_s,q` parameters which uniquely define the profile (:math:`F` is the total flux integrated to infinity). Note that :math:`R_s` is not the effective radius, but in fact the scale radius in the more straightforward sersic representation: .. math:: I(R) = I_0e^{-(R/R_s)^{1/n}} Args: flux: total flux integrated to infinity (flux) n: sersic index R: Scale radius q: axis ratio (b/a) """ return flux / (2 * np.pi * q * n * R ** 2 * torch.exp(gammaln(2 * n)))
[docs] def sersic_Ie_to_flux_torch(Ie, n, R, q): """Compute the total flux integrated to infinity for a 2D eliptical sersic given the :math:`I_e,n,R_e,q` parameters which uniquely define the profile (:math:`I_e` is the intensity at :math:`R_e` in flux/arcsec^2). Note that :math:`R_e` is the effective radius in the sersic representation: .. math:: I(R) = I_ee^{-b_n[(R/R_e)^{1/n}-1]} Args: Ie: intensity at the effective radius (flux/arcsec^2) n: sersic index R: Scale radius q: axis ratio (b/a) """ bn = sersic_n_to_b(n) return ( 2 * np.pi * Ie * R ** 2 * q * n * (torch.exp(bn) * bn ** (-2 * n)) * torch.exp(gammaln(2 * n)) )
[docs] def sersic_flux_to_Ie_torch(flux, n, R, q): """Compute the intensity at :math:`R_e` (flux/arcsec^2) for a 2D eliptical sersic given the :math:`F,n,R_e,q` parameters which uniquely define the profile (:math:`F` is the total flux integrated to infinity). Note that :math:`R_e` is the effective radius in the sersic representation: .. math:: I(R) = I_ee^{-b_n[(R/R_e)^{1/n}-1]} Args: flux: flux integrated to infinity (flux) n: sersic index R: Scale radius q: axis ratio (b/a) """ bn = sersic_n_to_b(n) return flux / ( 2 * np.pi * R ** 2 * q * n * (torch.exp(bn) * bn ** (-2 * n)) * torch.exp(gammaln(2 * n)) )
[docs] def sersic_inv_torch(I, n, Re, Ie): """Invert the sersic profile. Compute the radius coresponding to a given intensity for a pure sersic profile. """ bn = sersic_n_to_b(n) return Re * ((1 - (1 / bn) * torch.log(I / Ie)) ** (n))
[docs] def moffat_I0_to_flux(I0, n, rd, q): """ Compute the total flux integrated to infinity for a moffat profile. Args: I0: central intensity (flux/arcsec^2) n: moffat curvature parameter (unitless) rd: scale radius q: axis ratio """ return I0 * np.pi * rd**2 * q / (n - 1)
[docs] def general_uncertainty_prop( param_tuple, #tuple of parameter values param_err_tuple, # tuple of parameter uncertainties forward # forward function through which to get uncertainty ): """Simple function to propogate uncertainty using the standard first order error propogation method with autodiff derivatives. The encodes: .. math:: \\sigma_f^2 = \sum_i \\left(\\frac{df}{dx_i}\\sigma_i\\right)^2 where `i` indexes over all the parameters of the function `f` Args: param_tuple (tuple): A tuple of the inputs to the function as pytorch tensors. param_err_tuple (tuple): A tuple of uncertainties (sigma) for the input parameters. forward (func): The function through which to propogate uncertainty, should be of the form: `f(*x) -> y` where `x` is the `param_tuple` as given and `y` is a scalar. """ # Make a new set of parameters which track uncertainty new_params = [] for p in param_tuple: newp = p.detach() newp.requires_grad = True new_params.append(newp) # propogate forward and compute derivatives f = forward(*new_params) f.backward() # Add all the error contributions in quadrature x = torch.zeros_like(f) for i in range(len(new_params)): x = x + (new_params[i].grad * param_err_tuple[i])**2 return x.sqrt()